JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **32**, No. 2, May 2019 http://dx.doi.org/10.14403/jcms.2019.32.2.171

GALOIS POLYNOMIALS

JI-EUN LEE* AND KI-SUK LEE**

ABSTRACT. We associate a positive integer n and a subgroup H of the group G(n) with a polynomial $J_{n,H}(x)$, which is called the Galois polynomial. It turns out that $J_{n,H}(x)$ is a polynomial with integer coefficients for any n and H. In this paper, we provide an equivalent condition for a subgroup H to provide the Galois polynomial which is irreducible over \mathbb{Q} .

1. Introduction

Let *n* be a positive integer and ζ_n be the *n*-th primitive root of unity, that is $\zeta_n = e^{\frac{2\pi i}{n}}$. It is well known that the *n*-th Cyclotomic polynomial $\Phi_n(x)$ is equal to

$$\Phi_n(x) = \prod_{k \in G(n)} (x - \zeta_n^k),$$

where G(n) is the multiplicative group of invertible integers modulo n.

Suppose *H* be a subgroup of G = G(n) and $G/H = \{h_1H, h_2H, \dots, h_lH\}$ be its corresponding quotient group. For each $k = 1, \dots, l$, define $a_k = \sum_{h \in H} \zeta^{h_k h}$. We now consider the monic polynomial having a_1, \dots, a_l as its roots, denoted by $J_{n,H}(x)$. Then the polynomial

$$J_{n,H}(x) = (x - a_1)(x - a_2) \cdots (x - a_l)$$

is called Galois polynomial.

In this paper, the irreducibility of Galois polynomials is studied. If n is square-free, $J_{n,H}(x)$ is irreducible over \mathbb{Q} for any subgroup H([1]], Theorem3.6). However, it is not always true if n has a squared factor.

Received February 14, 2019; Accepted March 15, 2019.

²⁰¹⁰ Mathematics Subject Classification: Primary 12D05, 12E05, 12F05, 12F10. Key words and phrases: *n*-th cyclotomic polynomial, Galois irreducible polynomial, semi-cyclotomic polynomial.

^{**}The corresponding author, Ki-Suk Lee.

Here, we modify Evans' criterion([5]) and prove the condition of H to get an irreducible Galois polynomial when n is general.

2. Irreducibility of Galois polynomials

Throughout the paper, r is the product of the distinct prime factors of n, or twice that, according as $8 \nmid n$ or $8 \mid n$. Let H be a subgroup of G(n) and define $\eta = \sum_{h \in H} \sigma_h(\zeta)$. Write $n = p^{\alpha} \cdot m$ where p is the largest prime factor of n > 1 with $p \nmid m, \alpha \ge 1$.

In this section, we study the irreducibility of $J_{n,H}(x)$ when n is general. If n is not square-free, the condition of H to get an irreducible Galois polynomial is not simple. We will show that if no nontrivial element of $H \equiv 1 \pmod{r}$, the Galois polynomial $J_{n,H}(x)$ is irreducible. First, we prove the following Lemma which will be used proving main Theorem.

LEMMA 2.1. Suppose that $k \in Z$ with $p \nmid k$ and that $p^B || (x - 1)$ where $B \geq 1$, but B > 1 when p = 2. Then $p^{A+B} || (x^{kp^A} - 1)$ for each integer $A \geq 0$.

Proof. We can write $x = mp^B + 1$ with $p \nmid m$ and prove the Lemma by induction on A.

When A = 0,

$$x^{k} - 1 = (mp^{B} + 1)^{k} - 1$$

= $(mp^{B})^{k} + {}_{k}C_{1}(mp^{B})^{k-1} + \dots + {}_{k}C_{k-1}(mp^{B}) + 1 - 1$
= $mp^{B}\{(mp^{B})^{k-1} + \dots + {}_{k}C_{k-2}(mp^{B}) + {}_{k}C_{k-1}\}$
= $mp^{B}\{(mp^{B})^{k-1} + \dots + {}_{k}C_{k-2}(mp^{B}) + k\}.$

Since $p \nmid k, p^B \mid (x^k - 1)$ and $p^{B+1} \nmid (x^k - 1)$, that is $p^B \parallel (x^k - 1)$. When A = 1,

$$x^{kp} - 1 = (mp^B + 1)^{kp} - 1$$

= $(mp^B)^{kp} + kp(mp^B)^{kp-1} + \dots + kp(mp^B) + 1 - 1$
= $\{(mp^B)^{kp} + kp(mp^B)^{kp-1} + \dots + kpC_2(mp^B)^2 + kmp^{B+1}\}.$

Since $p \nmid km, p^{B+1} \parallel kmp^{B+1}$. Therefore $p^{B+1} \parallel (x^{kp} - 1)$.

Now, assume that Lemma is true for A, we will show that it is true for A + 1.

$$x^{kp^{A+1}} - 1 = (x^{kp^{A}} - 1)(x^{kp^{A}(p-1)} + x^{kp^{A}(p-2)} + \dots + x^{kp^{A}} + 1)$$

As we assumed, $p^{A+B} \parallel (x^{kp^A} - 1)$, we will check if $p \parallel (x^{kp^A(p-1)} + x^{kp^A(p-2)} + \dots + x^{kp^A} + 1)$.

$$x^{kp^{A}(p-1)} = (1 + mp^{B})^{kp^{A}(p-1)} = \dots + kp^{A}(p-1)mp^{B} + 1,$$

$$x^{kp^{A}(p-2)} = (1 + mp^{B})^{kp^{A}(p-2)} = \dots + kp^{A}(p-2)mp^{B} + 1,$$

$$\vdots$$

$$x^{kp^{A}} = (1 + mp^{B})^{kp^{A}} = \dots + kp^{A}mp^{B} + 1.$$

Therefore,

$$x^{kp^{A}(p-1)} + x^{kp^{A}(p-2)} + \dots + x^{kp^{A}} + 1 = \dots + k(\frac{(p-1)p}{2})mp^{A+B} + p$$
$$= p(\dots + k(\frac{(p-1)p}{2})mp^{A+B-1} + 1)$$

So we get $p^{A+B+1} \parallel (x^{kp^{A+1}} - 1)$.

LEMMA 2.2. Let $x \in Z$, $x \equiv 1 \pmod{r}$ and $x \neq 1 \pmod{n}$. Then for some d > 0 and some prime t such that $t^2 \mid n, x^d \equiv 1 \pmod{\frac{n}{t}}$ and $x^d \neq 1 \pmod{n}$.

Proof. We proceed by induction on the number of distinct prime factors of n. Since $t^2 | n$ is a condition, we may assume $n = p^{\alpha}$, $a \ge 2$ for the first step of induction. Then $x = p^{\alpha-1} + 1$ and d = 1 will work. Now, we assume that $n = p^{\alpha} \cdot m$ with (p, m) = 1 and consider two cases; when $p^{\alpha} | (x - 1)$ and $p^{\alpha} \nmid (x - 1)$.

Case 1: $p^{\alpha} | (x - 1)$

Since $x \equiv 1 \pmod{r_0}$ and $x \neq 1 \pmod{m}$, the induction hypothesis yields some d > 0 and some prime t such that $t^2 | m$, $x^d \equiv 1 \pmod{m/t}$, and $x^d \neq 1 \pmod{m}$. Thus $x^d \equiv 1 \pmod{\frac{n}{t}}$ and $x^d \neq 1 \pmod{n}$.

Case 2: $p^{\alpha} \nmid (x-1)$

Since $x \equiv 1 \pmod{r}$, we have $p^B || (x - 1)$. where $\alpha > B \ge 1$ and B > 1 when p = 2. Since p is the largest prime factor of n, $p \nmid \phi(m)$. Define $d = \phi(m)p^A$, where $A = \alpha - B - 1$. Note that $A \ge 0$. By Lemma 2.1, $p^{\alpha - 1} || (x^d - 1)$. Also $x^d \equiv 1 \pmod{m}$ since

Ji-Eun Lee and Ki-Suk Lee

 $\phi(m)|d$. Therefore $x^d \equiv 1 \pmod{\frac{n}{t}}$ and $x^d \neq 1 \pmod{n}$ holds with t = p. Finally note that $p^2 | n$ since $\alpha > B \ge 1$.

LEMMA 2.3. If no nontrivial element of H is $\equiv 1 \pmod{r}$ and H =G(n), then $\eta = \pm 1$.

Proof. If no nontrivial element of H is $\equiv 1 \pmod{r}$ and H = G(n), n is square free. The Ramanujan's sum $\sum_{x \in G} \zeta_n^x$ equals $\mu(n)$, where μ is the Möbius function. Since n is square free, $\mu(n) = \pm 1$, so $\eta = \pm 1$. \Box

THEOREM 2.4. Suppose that no nontrivial element of H is $\equiv 1 \pmod{r}$. Then $\eta \neq \sigma_c(\eta)$ for all $c \in G - H$.

Proof. We proceed by induction on the number of distinct prime factors of n. For the first step, let p be any prime number. If n = p, we get $\eta \neq \sigma_c(\eta)$ since Galois polynomial $J_{n,H}(x)$ is always irreducible since all roots of $J_{n,H}(x)$ are distinct([1], Theorem 2.5). If $n = p^k$, with $k \ge 2$, we get $\eta \neq \sigma_c(\eta)([4], \text{Theorem3.7}).$

Now, we consider when n has more than one prime factor. We may write $n = p^{\alpha} \cdot m$, where (p, m) = 1. Let the subgroup $I \subset H$ defined by

$$I = \{x \in H : x \equiv 1 \pmod{p^{\alpha}}\}$$

Reduction (mod m) maps I isomorphically onto a subgroup $J \subset G_m$. Write

$$H = \bigcup_{i=1}^{k} x_i I,$$

a disjoint union of cosets with $x_1 = 1$. Then

$$R := \sigma_{m+p^{\alpha}}(\eta) = \sum_{h \in H} \zeta_m^h \zeta_{p^{\alpha}}^h = \sum_{i=1}^k \sigma_{x_i} \{ \zeta_{p^{\alpha}} \sum_{x \in I} \sigma_x(\zeta_m) \} = \sum_{i=1}^k \sigma_{x_i} \left(\delta \zeta_{p^{\alpha}} \right),$$

where $\eta = \sum_{h \in H} \sigma_h(\zeta_n)$ and $\delta = \sum_{x \in I} \sigma_x(\zeta_m)$. Since $\delta = \sum_{x \in I} \sigma_x(\zeta_m) = \sum_{x \in J} \sigma_x(\zeta_m)$, and *m* has one less distinct prime factors than *n*, by induction hypothesis, $\tau_w(\delta) \neq \delta$ for all $w \in \Gamma$. $G_m - J.$

For $1 \leq i \leq k$, write

$$x_i = ps_i + r_i, \ cx_i = ps'_i + r'_i \ (0 < r_i, r'_i < p).$$

We proceed to show that

$$r_1, \cdots, r_k$$
 are distinct and r'_1, \cdots, r'_k are distinct.

174

Galois polynomials

If $x_i \equiv x_j \pmod{p}$ with $i \neq j$, then $x := x_i x_j^{-1} \equiv 1 \pmod{p}$. Since the cosets are different, $x \neq 1 \pmod{p^{\alpha}}$. Thus

$$p^B || (x-1)$$
 with $1 \le B < \alpha$.

By Lemma 2.1,

 $x^{p^{\alpha-B}} \equiv 1 \pmod{p^{\alpha}}.$

Since $x^{\varphi(r)} \equiv 1 \pmod{r}$ and $x^{\varphi(r)} \in H$, $x^{\varphi(r)} \equiv 1 \pmod{n}$. Therefore $x^{\varphi(r)} \equiv 1 \pmod{p^{\alpha}}$. Since the exponents $p^{\alpha-B}$ and $\varphi(r)$ are relatively prime, $x \equiv 1 \pmod{p^{\alpha}}$. This is a contradiction. So, similarly we can prove that r'_1, \cdots, r'_k are different. If $cx_i \equiv cx_j \pmod{p}$, then $x_i \equiv$ $x_i \pmod{p}$.

We will prove that $\eta \neq \sigma_c(\eta)$ if $c \in G - H$. Suppose that $\eta = \sigma_c(\eta)$. We want to show that $c \in H$. If $\eta = \sigma_c(\eta)$, then R is $\sigma_c(R)$.

$$\sum_{i=1}^{k} \sigma_{x_i}(\delta) \zeta_{p^{\alpha}}^{x_i} = R = \sigma_c(R) = \sum_{i=1}^{k} \sigma_{cx_i}(\delta) \zeta_{p^{\alpha}}^{cx_i}.$$
$$\sum_{i=1}^{k} \left(\zeta_{p^{\alpha}}^{ps_i} \sigma_{x_i}(\delta) \right) \zeta_{p^{\alpha}}^{r_i} = \sum_{i=1}^{k} \left(\zeta_{p^{\alpha}}^{ps'_i} \sigma_{cx_i}(\delta) \right) \zeta_{p^{\alpha}}^{r'_i}.$$

Since $\zeta_{p^{\alpha}}, \zeta_{p^{\alpha}}^2, \cdots, \zeta_{p^{\alpha}}^{p-1}$ comprise a part of a basis for $\mathbb{Q}(\zeta_n)$ over $\mathbb{Q}(\zeta_n^p), r'_i = r_1 = 1$ for some *i*, and

$$\zeta_{p^{\alpha}}^{ps_1}\sigma_{x_1}(\delta) = \zeta_{p^{\alpha}}^{ps'_i}\sigma_{cx_i}(\delta).$$

Note that $x_1 = 1$, $r_1 = 1$, and $s_1 = 0$. Then we get $\delta = \zeta_{p^{\alpha}}^{d-1} \sigma_d(\delta)$, where

$$d := cx_i = ps'_i + 1.$$

So, $\sigma_d(\delta) = \zeta_{p^{\alpha}}^{1-d} \delta$.

Assume for the purpose of contradiction that $d \neq 1 \pmod{p^{\alpha}}$. Then $p^B || (1-d)$ for some B with $1 \le B < \alpha$, and B > 1 when p = 2. Define

$$d_A = d^{\varphi(m)p^A}$$
, where $A = \alpha - B - 1$.

By Lemma 2.1,

(2.1)
$$p^{\alpha-1} || (d_A - 1)$$

Since $d^{\varphi(m)} \equiv 1 \pmod{m}$, *m* divides $d_A - 1$. Consequently $mp^{\alpha-1} || (d_A - 1)^{\alpha-1} || (d_A - 1)^{\alpha$

1). Applying σ_d successively to $\sigma_d(\delta) = \zeta_{p^{\alpha}}^{1-d}\delta$, we get $\sigma_{d^A}(\delta) = \delta\zeta_{p^{\alpha}}^{1-d_A}$. Therefore, $\delta \equiv \delta\zeta_{p^{\alpha}}^{1-d_A}$, and $\delta(1 - \zeta_{p^{\alpha}}^{1-d_A}) = 0$. This implies that $1 - d_A \equiv 0 \pmod{p^{\alpha}}$, which contradicts to (2.1). So we have that $d \equiv 1 \pmod{p^{\alpha}}.$

175

Reduction (mod m) maps d to an element $y \in G_m$. Since $y \equiv d \pmod{m}$ and $\delta \in \mathbb{Q}(\zeta_m)$, we get

$$\tau_u(\delta) = \sigma_d(\delta).$$

Also, $d \equiv 1 \pmod{p^{\alpha}}$ implies that $\sigma_d(\delta) = \zeta_{p^{\alpha}}^{1-d}\delta$ is equal to δ . Therefore $\tau_y \delta = \delta$ and m has one less prime factors than n, we get by induction assumption, $y \in J$. Since I and J are isomorphic, there exists $h \in I$ such that $h \equiv y \pmod{m}$. This implies that $d \equiv h \pmod{m}$. Also have $h \equiv 1 \pmod{p^{\alpha}}$ because $h \in I$. Since $d \equiv h \equiv 1 \pmod{p^{\alpha}}$ and $d \equiv h \pmod{m}$, we get $d \equiv h \pmod{n}$. Therefore d = h in G_n and d is in H, since h is in I. Finally we get $c \in H$, because $d = cx_i$ and $x_i \in H$.

THEOREM 2.5. No nontrivial element of H is $\equiv 1 \pmod{r}$ if and only if $\eta \neq 0$.

Proof.

- \implies If G = H, then $\eta \neq 0$ by Lemma2.3. If $G \neq H$, then $\eta \neq 0$ by Theorem2.4.

THEOREM 2.6. If $\eta \neq 0$, then η has degree $e = |G \setminus H|$ over \mathbb{Q} .

Proof. Suppose that $\eta \neq 0$. By Theorem2.5, no nontrivial elements of H is $\equiv 1 \pmod{r}$. Then by Theorem2.4, $\eta \neq \sigma_c(\eta)$ for $c \in H$. Thus η is fixed by exactly |H| automorphisms σ_c in $Gal(\mathbb{Q}(\zeta))$ so η has degree e over \mathbb{Q} .

Note: This means that Galois polynomial is irreducible if and only if $\eta \neq 0$, or equivalently if and only if no nontrivial element of H is $\equiv 1 \pmod{r}$.

References

- M. Kwon, J. E. Lee, and K. S. Lee, *Galois irreducible polynomials*, Communications of the Korean Mathematics Society, **32** (2017), no. 1, 1-6.
- [2] K. S. Lee, J. E. Lee and J. H. Kim, Semi-cyclotomic polynomials, Honam Mathematical Journal, 37 (2015), no. 4, 469-472.

176

Galois polynomials

- [3] K. S. Lee and J. E. Lee, Classification of Galois Polynomials, Honam Mathematical Journal, 39 (2017), no. 2, 259-265.
- [4] G. C. Shin, J. Y. Bae, and K. S. Lee, *Irreducibility of Galois Polynomials*, Honam Mathematical Journal, 40 (2018), no. 2, 281-291.
- [5] Ronald J. Evnas, Period polynomials for generalized cyclotomic periods, Manuscripta math. 40 (1982), 217-243.
- [6] J. R. Bastida and R. Lyndon, *Field Extensions and Galois Theory*, Encyclopedia of Mathematics and Its Application, Addison-Wesley Publishing Company, 1984.
- [7] T. W. Hungerford, Abstract Algebra An Introduction, Brooks/Cole, Cengage Learning, 2014.
- [8] S. Lang, Algebra, Addison-Wesley Publising Company, 1984.
- [9] P. Ribenboim, Algebraic Numbers, John Wiley and Sons Inc. 1972.
- [10] G. H. Hardy and Wright, E. M. Wright, An Introduction to the Theory of Numbers, Oxford: Oxford University Press, 1980.
- [11] Harold G. Diamond, Frank Gerth III, and Jeffrey D. Vaaler, Guass Sums and Fourier Analysis on Multiplicative subgroups of Z_q, Transactions of the American Mathematical Society, 277 (1983), no. 2, 711-726.
- [12] Yim su bin, *Semi-cyclotomic polynomial*, Master degree thesis paper, Korea National University of Education (2017).
- [13] Lim sang a, *The coefficients of Galois polynomial*, Master degree thesis paper, Korea National University of Education (2018).
- [14] Bae Jae Yun, Irreducibility of Galois polynomials when n has positive square factor, Master degree thesis paper, Korea National University of Education (2018).

**

Department of Mathematics Education Korea National University of Education Chungbuk 363-791, Republic of Korea *E-mail*: dlwldms8180gmail.com

*

Department of Mathematics Education Korea National University of Education Chungbuk 363-791, Republic of Korea *E-mail*: ksleeknue@gmail.com